

What is type 2 diabetes?

A 100 (14) - 100 (14) - 104 (14)

Type 2 diabetes dynamics

Type 2 diabetes dynamics

Where we begin

Skeletal muscle insulin resistance

Subsystem I: superoxide production

Subsystem I equations

- ? G reference parameter for food intake, with an increasing function of G.
- ? **F** mitochondrial function variable; form specified in feedback coupling.

Subsystem I equations

⁹ **G** reference parameter for food intake, with an increasing function of G.

Mitochondrial dysfunction: assumptions

Skeletal muscle insulin resistance

MARS: A network theory of aging

M A R

Modeling mitochondrial selection: setup

 $M_0(t) :=$

 C_0

3

the

Modeling mitochondrial selection: state transitions

0	1	0	1
0	1	0	1

Mean time to total damage

 $T_i :=$

i

Superoxide-to-damage feedback

$$\mu(t) := \mu_0 \ 1 + \ \frac{R_s(t)}{R_{s0}} - 1$$

$$_{j}(t) := \Pr(M_{1} \quad j)$$

$$\frac{d_{0}}{dt} - \hat{q}_{00} + \hat{p}_{10} +$$

$$D(t) = \Pr(M_1 \quad 1) = \frac{1}{K} \qquad j(t) \quad j$$

Feedback models I -

d*t*

$$F_{\text{TMDM}} = (1 - L)(1 - D)$$

.

Superoxide

Results III: response to mitochondrial selection

Results IV: response to selection parameters

